
One of the major problems in operation of a refinery plant is the heat exchanger fouling build-up. Therefore, there is a need for
continuous detection of fouling formation on heat exchangers in order to schedule preventive maintenance.
Traditional diagnostics of the fouling formation have a number of limitations. On the other hand data-driven models can be developed
using identification methods based on existing DCS data.
An online monitoring system is developed for a shell and tube heat exchanger. Heat exchanger outlet temperatures are predicted using
neural network models from inferential input variables. The heat exchanger performance is assessed by comparing results of heat
transfer coefficient of clean (based on the model prediction outlet temperatures) and fouled (based on the measured outlet
temperatures) systems. The deviation between predicted and actual values indicates performance degradation due to fouling.

The performance criteria of developed models together
with residual monitoring indicate that the neural
networks effectively detect fouling formation.
By applying developed models onsite more stable plant
operation and significant savings could be achieved.
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Figure 1. Hydrocracker unit with E-007 heat exchanger
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Figure 2. The models for predicting the outlet temperatures

Input variables Output variables

TH,i     Inlet hot stream temperature TH,o Outlet hot stream temperature

TC,i Inlet cold stream temperature

TC,o Outlet cold stream temperature

Table 1. Neural network model

Figure 3. Online monitoring system development procedure
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MSE
Algorithm Hidden act. Output act.

4-5-1 0,972 0,973 0,973 0,008 0,009 0,008 BFGS 200 Tanh identitiy
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Figure 6, Comparison of actual 
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Figure 4, Comparison of  actual 
and predicted TC,o , on the 

validation dataset
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