
APROMON

PID Control Monitoring Software for Chemical Plants and Refineries

includes cascade/multivariable control loops

ERROR	ERROR SQUAR	RED ERROR DEVI	ATION	VARIANCE		STD. DEVIATION		CONTROL TIGHTNESS		IMBALANCE	
CRIMP	UNSTABLE	HUNTING		SPECTRU	M	MATCH		NOISE L		SATURATION OP	
SATURATION PV	SPIKE PV	FROZEN PV	FROZEN PV ROPE PPK INTER		GTH	VACILLATION ONSTREAM FACTOR		PROPORTIONAL INUSE		INTEGRAL GRADE	
CHEAT	PP	PPK			E						
					l				SPECTBU		
TAG	ERROR	CONTROL TIGHTNESS	ROPE	ROPE LENGTH		ONSTREAM FACTOR		IMBALANCE		м	CRIME
10FIC12007	0.7108	197.674	0	1.2174 10		0.0	1.062		123.2898	3	0.0472
10FIC13007	0.0562	140.1007		0458	100.0		1.0357		22.5461		0.0
10FIC15004	0.0419	62.1559	0	0087	100.0		1.0568		6.6276		0.586
10FIC15009	0.2308	89.0679	0	2267	100.0		1.0045		16.0481		1.8968
10FIC15021	0.0718	53.3657	0.0204		100.0		1.0321		8.2938		0.002
10LIC13011	0.0702	36.7853	0.0427		100.0		1.0516		4.9571		0.0
10LIC14003	0.2177	35.2855	0.0697		100.0		1.0553		3.3111		0.0
10LIC15001A	0.1753	16.2472	0.0171		100.0		1.7433		5.1602		0.012
10LIC15006	0.5142	8.7901	0.0213		100.0		1.1392		1.8907		0.0
10LIC15013	1.2985	58.6981	0.3158		100.0		1.015		26.1237		0.0
10PIC13017	0.051	24.1208	0.0387		100.0		1.0524		2.9117		0.0
10PIC15037	-1	0.4166	0.0197		8.0889		60.9462		-1		0.0
10PIC15041	0.161	72.4458	0.2145		100.0		1.0364		17.3762		0.0

Web: lam.fkit.hr

www.picontrolsolutions.com

E-mail: lam@fkit.hr

Mob.: +385 (0) 95 8210 - 600

On-line process control, monitoring and diagnostics is extremely important for optimal performance of processes and plants. Using modern tools for process control monitoring and diagnostics stable operation, energy savings and greater efficiency of the process can be achieved.

APROMON control monitoring software generates a report automatically, identifying PID control loop problems.

APROMON allows process control engineers to quickly focus on the loops deserving the most attention identifying measuring sensor, final control element and controller problems.

APROMON can be used when:

- Control loops have bad performance
- Control loops are oscillating
- Control valves are not working well or too fast
- There is a need for PID optimization
- Measuring instruments have signal problems
- Many other diagnostics (about 30 criteria!) important for the process engineers.

Benefits of using APROMON:

- Stabilize plant operation
- Early problem detection
- Optimal control loop performance
- Increase plant throughput and profit margin
- Improve plant reliability and safety
- Energy savings and greater efficiency

Revolutionary **True Amplitude Detection (TAD)** algorithm

The **TAD** algorithm is the most advanced and reliable oscillation detection software. It will trap oscillations only when they are large enough to cause problems. **TAD** never gets fooled by any level of noise, drift and complexity.

Tadpole helps to:

- 1. Eliminates oscillations present in the process
- 2. Push variables closer to operating constraints
- 3. Adaptively adjust PID tuning parameters
- 4. Increase plant reliability