

The 12th EUROPEAN CONGRESS **OF CHEMICAL ENGINEERING**

Florence 15–19 September 2019

Fouling Detection in Industrial Heat Exchanger Using Neural Network Models

Željka Ujević Andrijić^{*}, Nenad Bolf, Adriana Brzović, Hrvoje Dorić University of Zagreb, Faculty of Chemical Engineering and Technology, Zagreb, Croatia * Corresponding author: zujevic@fkit.hr

Introduction

One of the major problems in operation of a refinery plant is the heat exchanger fouling build-up. Therefore, there is a need for continuous detection of fouling formation on heat exchangers in order to schedule *preventive maintenance*. Traditional diagnostics of the fouling formation have a number of limitations. On the other hand data-driven models can be developed using identification methods based on existing DCS data. An online monitoring system is developed for a shell and tube heat exchanger. Heat exchanger outlet temperatures are predicted using

neural network models from inferential input variables. The heat exchanger performance is assessed by comparing results of heat transfer coefficient of clean (based on the model prediction outlet temperatures) and fouled (based on the measured outlet temperatures) systems. The deviation between predicted and actual values indicates *performance degradation* due to fouling.

Figure 1. *Hydrocracker unit with E-007 heat exchanger*

Reduced heat transfer efficiency due to ammonium bisulphide salt precipitation in the heat exchanger tubes.

 Table 1. Neural network model

	Input variables			Output variables			
Т _{н,} і	Inlet hot stream temperature			T _{H,o} Outlet hot stream temperature			
T _{c,i}	Inlet cold stream temperature			T _{c,o} Outlet cold stream temperature			
m	Hydrogen mass now rate		_				
Тн, Тс, <i>т</i>	,i i Heated stream	Tc,₀	Тн, Тс, ṁ		Heating stream	Тн,о	
Figure 2. The models for predicting the outlet temperatures							
Data Preprocessing	Variable selection Outlier removal Data filtering	de N	NN mo evelopr lodel re evalua	Model Developmen del ment esults tion	The neu network for pred outlet tempera	iral ks models licting atures	

Heat transfer coefficient based on predicted data

 $\dot{m} * c_p * (T_{\mathrm{H},i} - T_{\mathrm{H},0,model})$ $U_{clean} =$ $\overline{A * F * \left(\frac{T_{\mathrm{H},i} - T_{\mathrm{C},\mathrm{o},model}}{\ln\left(\left(T_{\mathrm{H},i} - T_{\mathrm{C},\mathrm{o},model}\right) / \left(T_{\mathrm{H},\mathrm{o},model} - T_{\mathrm{C},i}\right)\right)}\right)}$

Fouling factor (R_f) :

$$R_f = \frac{1}{U_{fouling}} - \frac{1}{U_{clear}}$$

Figure 3. Online monitoring system development procedure

Results

The performance criteria of developed models together with residual monitoring indicate that the neural networks effectively detect fouling formation. By applying developed models *onsite* more stable plant operation and significant savings could be achieved.

[1] C. Ahilan, J. Edwin Raja Dhas, K. Somasundaram and N. Sivakumaran, "Performance assessment of heat exchanger using intelligent decision making tools", Applied Soft Computing, vol. 26, pp. 474-482, 2015. [2] S. Lalot and H. Pálsson, "Detection of fouling in a cross-flow heat exchanger using a neural network based technique", International Journal of Thermal Sciences, vol. 49, no. 4, pp. 675-679, 2010. [3] M. Navvab Kashani, J. Aminian, S. Shahhosseini and M. Farrokhi, "Dynamic crude oil fouling prediction in industrial preheaters using optimized ANN based moving window technique", Chemical Engineering Research and Design, vol. 90, no. 7, pp. 938-949, 2012. [4] Ž. Ujević Andrijić, N. Bolf, "Using the PI System in Chemical Engineering Education and Research", OSISOFT PI World EMEA 2018 - Barcelona