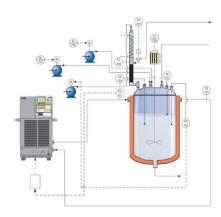
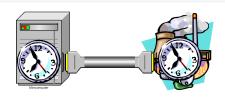


Good cooperation practice PLIVA - University of Zagreb



Laboratory Batch Reactor Automation and Optimisation



THE PURPOSE AND OBJECTIVE

- Designing a system for easy experimentation in laboratory batch reactors.
- Modern process control system implementation:
 - Reliable and safe process control
 - Accuracy and repeatability of experiments
 - Continuous data acquisition
 - Analysis of experimental results

PROJECT ACTIVITIES

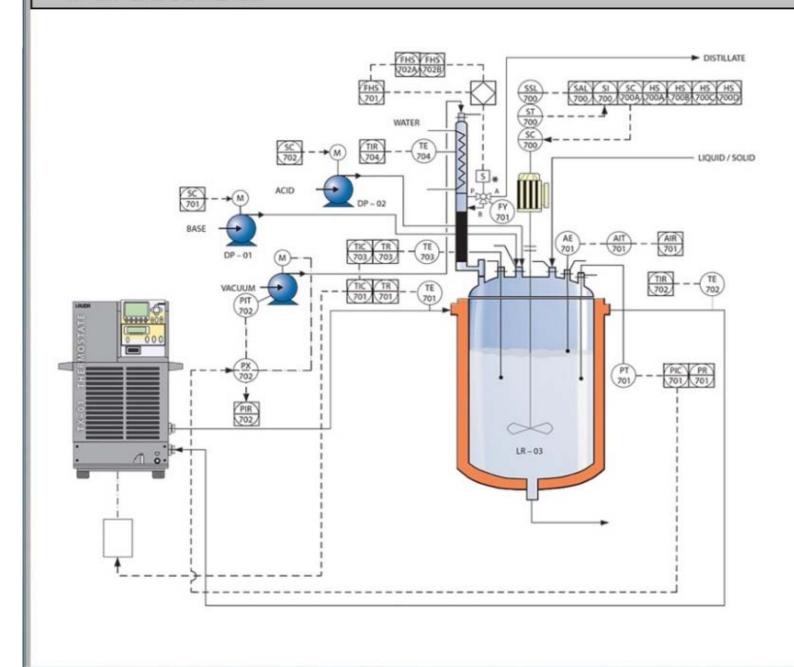
Group	Description
Α	Equipment supply
1.	Supply of measuring equipment and materials
2.	Supply of computer, controller and dedicated software
3.	Calibration / validation of measuring devices
В	System installation and configuration
1.	Process flow (PFD) & Piping and instrumentation (P&I) diagrams
2.	Installation of measuring and control equipment
3.	Transducer configuration
4.	Control system design and configuration
5.	SCADA system instalation and configuration
6.	Technical documentation and operating instructions

PROJECT IMPLEMENTATION

Group	Description
С	System check and analysis
1.	Testing of measuring equipment
2.	System start-up
D	Control loop tuning and optimisation
1.	Control system optimisation - Temperature control loops (heating/cooling) - Pressure/vacuum control loop - Destilate/reflux control loop
Е	System testing and commisioning
1.	Testing and start-up
2.	Engineer and operator training

POWER INSTALLATIONS / CABINET

REACTOR/ PUMPS / THERMOSTAT



CONTROL SYSTEM CONFIGURATION

System configuration includes:

- Inputs and outputs configuration
- Control loops configuration
- Sequencial logic and programming of sequences
- Alarm configuration
- Emergency shut down (EMD) procedure
- Operator interface configuration
- SCADA system configuration

P&I DIAGRAM

TI-703

23.5 °C

TI-701

22.9 °C

TI-705

-0.5 °C

TI-702

23.1 °C

TI-704

23.6 °C

PI-701

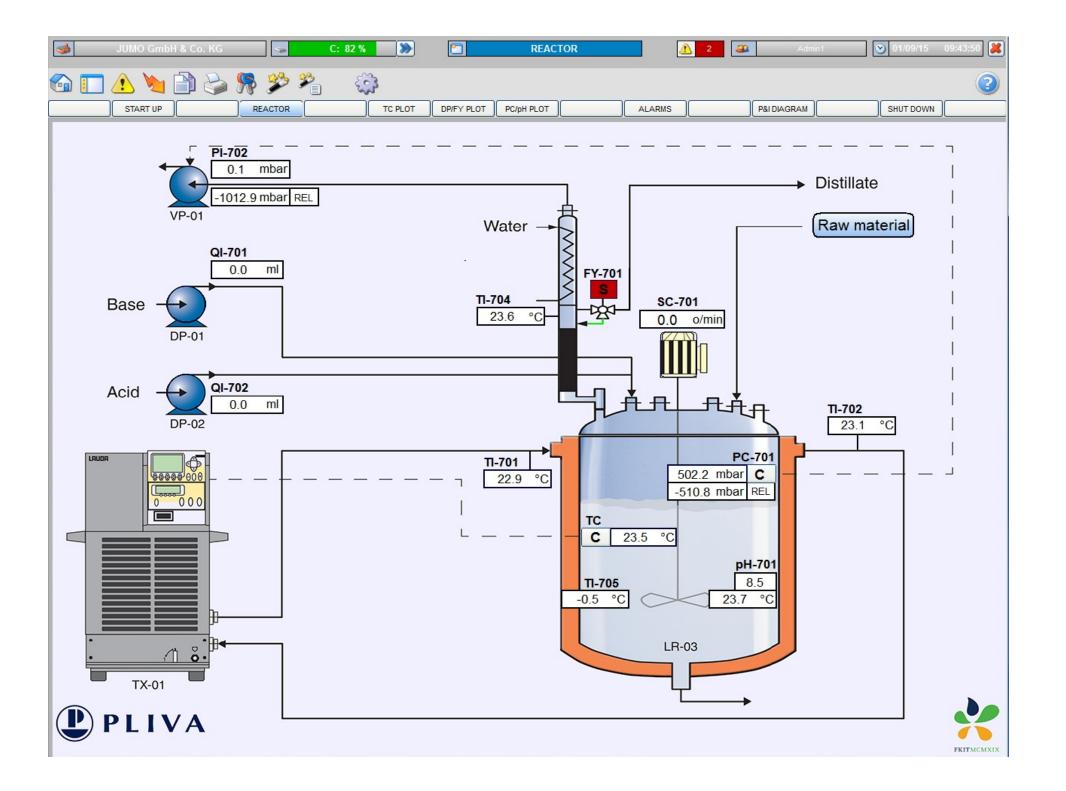
502.2 mbar -510.9 mbar

PI-702

0.1 mbar

-1012.9 mbar

pH-701


8.5

QI-701

0.0 ml

QI-702

0.0 ml

OVERALL PROJECT ACHIEVEMENTS

- ✓ Easy and intuitive conducting of the experiment
- ✓ Accurate, repeatable and reliable measurements
- ✓ Recording and analysis of experimental data
- ✓ Modern process control system application
- ✓ Interdisciplinary approach
- ✓ Reduced expences and optimal use of equipment

PROJECT PARTICIPANTS AND STAFF

